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An equation of state is obtained in closed form for a gas composed
of molecules with Lennard-Jones (n,%n) potentials. It is useful at
temperatures above about 12 (€/k) , where -€ 1is the minimum energy of
interaction and at all densities at which the equilibrium state is a
fluid. It is derived by summing over all the cluster integrals of the
virial expansion that occur in the approximation for the pair distribu-
tion function proposed by Percus and Yevick. ZEach cluster integral
is represented correctly to terms of the order of n.1 .

The equation agrees well with machine calculations of the pressure
of dense gases for n =00 and 'n = 12 , with static measurements of
the compression-of gases at~high'feduced-temperatures, and with some
preliminary measurements of the denSity of argon compressed by shock-

waves to pressures in the range 100-200 kb. /QIJT’*/OK
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AN EQUATION OF STATE OF GASES AT HIGH TEMPERATURES AND DENSITIES

1. Introduction

In 1958 Percus and Yevick suggested a new approximation in the
theory of fluids which has since been derived and expressed in several
ways [1 - 5] . The original formulation, which is used here, leads
to an expansion of the pair distribution function in powers of the
density, the coefficients of which are some, but not all, of the open
" cluster integrals of the exact expansion of Mayer and Montroll [?6]
Such a series is equivalent to an expansion of the pressure ih ﬁowers
of the density in which the coefficients are a selection from the com-
plete set of irreducible cluster integréls., These approximate virial
coefficients are of a particularly simple form for an assembly of hard
spheres for which the expansion.can be summed over all powers of the
density to obtain the equation of state in closed form. Wertheim [4]
and Thiele [5] have shown recently that this‘closed form can be also
- obtained directly from the equations of Percus and Yevick witﬁéut recourse
to an expansion in powers of the density. ‘ ;

These results are extended here to a gas between whose molécules
there is a Lennard-Jones (n,%n) potential. The extension can be made
only at temperatures where the repulsive forces are dominant, that is,
at temperatures above about 12 (€ /k) where -€ 1is the minimum energy
of interaction. The equation of state can be used for the calculation
of the properties of fluids compressed by strong shock-waves and of the
properties of the products of the detonation of explosives.

The Lennard-Jones (n,%n) potential for a pair of molecules

separated by a distance R is

’
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2, The Cluster Integrals

The expansion of the pair distribution function n2(R12) in powers
of the density has coefficients that are functions of the separation of
molecules 1 and 2. Each coefficient is obtained by integrating factors

f(Rij) over all positions of one or more additional molecules, where

f(Ry) - exp[-uCep/b] - 1 o

Thus the coefficient of the fourth power of the density is the cluster
integral shown schematically as c¢3 in Figure 1. The coefficient of

the fifth power is formed from three cluster integrals, shown schemat-
ically as d4 , d5 and d6é . The compressibility is obtained by

substituting n2(R12) into the exact equation of Ornstein and Zernike,

~ /. -1
() < 1 e,
[
where (N/Vjﬁmié‘Eﬁéjhﬁmbéfwdénsity."This équation is inverted, expanded
by the binomial theorem, and integrated with respect tc density to ob-
tain the familiar virial expansion for the pressure, whose coefficients
are C3 , D4 , D5 , D6 etc. of Figure 1. (The use of (2.2) is more
accurate for hard spheres than the direct calculation of ’) from the
virial theorem, for reasons which have been discussed elsewhere [7]').
The approximation of Percus and Yevick for n2(R12) can be expressed
[?1] by the rule that only those open cluster integrals are included
that can be written either as simple chains from molecule 1 to molecule
2 (eg. c3 and d4 ) or which can be formed from simple chains by
introducing interior bonds that do not cross each other. That is, terms
such as d5 are included, but d6 is not. The omission of d6 from
nz(R) leads to the omission of D6 from the pressure. The terms that

are retained in p are those whose calculation is the simplest. If

the molecules are hard spheres of diameter R il w1 becomes




infinite in (1.1), then all the required cluster integrals are rational

fractions of the appropriate power of bm , where

- 2 3
b = JaNR (2.3)

Rushbrooke [8:] has recently calculated the first six coefficients

_ 5.2 _ 19 .3 31 4 23 .5
B=b, , C=%by » Db, » E=955b, » F=573b, (2.4

The second differences of the numerical parts of these coefficients are
constant, hence the coefficients can be expressed as a quadratic func-
tion of the order, q , of the virial coefficient. If Lq is the

qth virial coefficient then the generalization of (2.4) is

- 3 - q-1
Lq = [1 + 3 q(q 1)] (bmlé) (2.5)
Substitution of (2.5) into the virial expansion gives a séries which

can be summed to the closed form
a

PV L+ E+E 2.6
NAT T (-¢€) '

where

E = b suv (2.7)

The second and third coefficients of (2.4)-(2.7) are correct, the
fourth exceeds the true value [9] by a factor of 1.0346, and the
fifth exceeds a value obtained by direct calculation [7] by a factor
of 1.100.
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3. The Lennard-Jones Potential

Two important features of the approximation of Percus and Yevick
for the hard spheres are, first, that the virial expansion can be
summed and, secondly, that the individual coefficients are unusually
accurate. The first property is a consequence of the exclusion of
all integrals, such as D6 , in which the numerical coefficients of
(bm)q-1 are irrational. All the clusters that are retained have
integrands that are related to the volume common to two overlapping
spheres. The integrand of C3 1is just this volume, and the integrands
of D4 , D5 and of the admitted parts of E are such volumes integrated
further between rational limits 177, 10] . Such simple results cannot
be expected for a function as complicated as a Lennard-Jones potential,
for which an exact expression can be obtained only for B . This is
usually written as an infinite series of factorial functions. The
limiting value of C at high temperatures can be expressed by these
functions to an accuracy of terms of the order of n-3 only [11] .
The limiting values of D4 and D5 have been obtained correct only
to n-1 [&2] . It is unlikely that an accuracy greater than n-'1
can be achieved for any of the higher cluster integrals without
recourse to numerical integration and hence with the loss df‘theuﬁdééf
of summation. In this paper, therefore, the results previcusly ob-
tained for D4 and D5 are first extended to lower temperatures and
then applied to all clusters included in the approximation of Percus
and Yevick.

All functions that occur in the integrands of C3 , D4 , D5 etc.

are of the form

a - o | ~ . :
£(r) T e S G.1
b :

where r 1is a reduced distance
r = R/Rm R ’ (3.2)

j 1is an exponent that lies in the range (0 < j <3n) , and a and



b are simple functions of the separations of some of the molecules in

the cluster. If £(r) can be approximated by a step-function,

-1 r < /O
r > /9

then the evaluation of integrals such as (3.1) is no more difficult for

f(xr)
(3.3)

]
o

£(x)

a (n,3n) potential than for hard spheres, and leads to similar ratiomal
expressions for the virial coefficients. However, this step is useful
only if £(r) can be accurately represented by the form (3.3), and if
the distance fD is independent of the exponent j in (3.1). If the
temperature is high then £(r) is almost equal to -1 at all separations
less than about xlln , where x , the reciprocal of the reduced

temperature, is small.
x =T = enT (3.4)
The function £(r) is almost zero at larger separations. It is exactly

4-(1,11)

to zero as r becomes infinite. As before [121 , let the distance /o
be defined by

) . oo Ly Hn

The subscript j is added to ,0 .since, in general, the distance defined

. X
zero at r = , has a maximum of (e - 1) at r =1, and tends

by (3.5) will depend upon this exponent. The integrals I(x) were first
studied by Lennard-Jones and their properties have recently been sum~

marised [1{] . From the first and third parts of (3.5),

H

}' —n
(A) = - X L) oo
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Expand I(x) in powers of x

; "4
~ L =, (+4-£-1)1 (2x7)
@ -

>y 4?/ (3.7)

- j N [7 / o Z(j i- .): (z,"*)'? .

This function can be written as a function of x , raised to the power

i

j , by the neglect only of terms smaller tham n-l . The first factorial

can be expanded around Of [;1] , and all terms (j/n) can be omitted

from the sum.

p) - 8T R ] 0

X}/n [‘ + 11—' F.(’()]‘L (3.»10)

"

where

R
2 —:)' (2*")
F(x) Z (3.11)

]

2= m
S n-)/2 x
=y - 2(7x) Laeﬂ)ef 'Z (2-)! 1D

and x‘ is Euler's constant, 0.577216-~. F(x) is closely related to,
but cannot be obtained from,the series used to calculate B for a
(n,3n) potential. It is tabulated in the Appendix. Thus /o is inde-

pendentof j (to terms of the order of n-'1 ) and can be written



ﬁ = x'/n [H— ' F-(X)J R .(.3.‘13)

This distance is a measure of the effective raﬁge of the repulsive
forces. If n is infinite then /9 is unity at all temperatures. If
n is finite then /O depends upon the tgmperatgre, both directly
through xlln : and also through the effecﬁs of the attractive forces
which enter through the sum in F(x) . In the limit of high temperatures

F(x) = X and
/J = ><I/’l [ [ + a’/n] ‘ o | (§.14)

The equation of state can now be obtained at once from the results
of Section 2 since, at each temperature, the molecules can be represented
in every cluster integral by hard spheres of diameter /0 . The pressure

is again given by (2.6) where E is now defined by

3
b a/n
E = q—';_) X [} + ;;'; F(*A)] (3.15)

%
The configuration energy of the gas, U , 1s obtained by the

integration from zero to an arbitrary density of

d
.-.Ia + T —f— (3.16)

W

*
ou
It is given by

U = fpv - NkT) o ‘ L (3.17)

where




G(x) ";‘g F (%) (3.19)

"
}
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Zi ('i'ﬂ - ‘)! (2 x‘/i)'é (3.20)
e (£-10/1

/2 % 2 <" (3.21)
= (vx) e + Z @
m=

G(x) {is also tabulated in the Appendix.
At high temperatures

*

v = v - mT) (3.22)
This result is exact for molecules that repel as R , since the
intermolecular energy of such molecules is a simple multiple of the

intermolecular virial, (R.du(R)/dR]

4. The Virial Coefficients

The qth virial coefficient is now

y autl 3(3« ~)/n 3(3 1)
L? D«o— ,_7,(7«")] (b /‘f—)

[ n ‘F(")] (4.1)

If n is infinite these coefficients reduce to (2.4)-(2.7) at all
temperatures. Figures 2-4 are a comparison.of (4.1) with directly
calculated coefficients [11-15] for the commonly used value of =n = 12 .

A co-volume bo is used instead of bm in these Figures to conform

with the usual convention.
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b o= 27%/my (4.2)

These Figures show also the coefficients calculated for a repulsive

potential
W®) = AR™ , vhere A= €R’ (4.3)

It is seen that the coefficients calculated from (4.1) all lie below
the true coefficients at high temperatures. The discrepancies are
small and arise from the neglect of terms higher than n-1 . At low
temperatures B exceeds the true value, whilét C and D 1lie below
it. B 1is the cluster integral that is most sensitive to the effects
of the attractive forces. Equation (4.1), with q = , is correct to
n-1 in the sense that the exact expression for [13] can be
written in this form at all temperatures by neglecting only terms of
the order of n”2 . However, in practice, the approximation is useful
only for reduced temperatures abové about 12. C is correct to the
same order at high temperatures [1#] whilst D and higher coefficients
suffer a little from the neglect of certain clusters in the equations
of Percus and Yevick. Nevertheless .the agreement at high temperatures
for all coefficients is most satisfactory.

This equation of state does not predict a liquid-vapour transition.
All virial coefficients vanish at a Boyle temperature at which F(x) = -n .
The configuration energy is positive at all densities if the temperature
is above that of the maximum of the virial coefficients. This tempera-

ture is determined by
-1
G(x) - n .F(x) = 1 (4.4)

This temperature is almost independent of n and is near x = 0.12

or U =38.




5. Comparison with Experiment

This equation of state is compared below with three kinds of
experiments. Calculations of the pressures of dense fluids have been
made by Monte Carlo and other numerical techniques for n = 00 and
n =12 . A comparison with these results is a direct tést of the
equation. Static measurements have been made by conventional techniques
of the pressures of helium, neon and hydrogen at high densities and
reduced temperatures. These can be compared with theory if the param-
eters n , € and R_  are known. However there is direct evidence

[16 that this form of potential is not suitable at temperatures and
densities when the repulsive forces are dominant, and so the comparison
is not so direct a test of the equation as is the comparison with
machine calculations. Finally, the equation is used to calculate the
pressure and temperature of a gas compressed to a high density by a
strong shock-wave.

Figure 5 is a comparison of (2.6) with the machine calculations of
Alder and Wainwright for n =00 . Two smooth curves have been drawn
through their results, one of which is the fluid and the other of which
is the solid state. There is probably a first-order transition at a
reduced pressure of 4.2. It is seen that the approximation of Percus
and Yevick is an excellent representation of pressure of the fluid phase
but that it cannot (since all its virial coefficients are positive)
show the transition to an ordered phase. It cannot be used, therefore,
to represent the equilibrium state for E > 0.45 , or (pv/NKT) > 10 .
There is also shown in the Figure an empirical equation of state which
Kihara and Hikita [18] devised for molecules repelling as R " in
order to represent the properties of the products of detonations, and
which has been so used by Fickett, Wood and Salsburg C19] .- This
equation is correct at low and high densities (where it approaches the
pressure of ordered phase) but is seriously low at the intermediate
densities of the compressed fluid.

Figure 6 is a comparison of the equation of state for n = 12
with the Monte Carlo calculations of Wood and Parker LZO] at two high

temperatures. There is again good agreement although the calculated

11
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pressures may be a little high, as in Figure 5. However part of the
small discrepancy at low densities may be in the Monte Carlo results
since the calculated curve is almost indistinguishable from the correct
four-term virial expansion for reduced densities below 0.7. The
pressures at the highest densities shown would be about 30 kb (at T = 20)
and 100 kb (at T = 100) for argon.

Figure 7 shows that a (12,6) potential recommended for helium

[13, 21]

o]
Helium R =2.884 , €/k-= 10.8° n =12 (5.1)

can be used with this equation of state to fit well the results of
Wiebe, Gaddy and Heins [22] , which extend to 1.kb. The excellence
of the agreement at -70°C may be partly fortuitous, since no quantal
corrections have been used.

There is no other gas for which measurements are available at so
high a temperature and density. The next most suitable are neon and
hydrogen, for which ‘the measurements of Michels and his colleagues
[23] extend to 150°C and 3 kb. This is a reduced temperature of
about 11 for both gases and Figure 8 shows that the calculated pres-

sures are a little too high when the following parameters are used

[13, 2‘1]

Neon R = 3.09 € /x = 35.7K n =12 (5.2)
Hydrogen R_ = 3.30 € /k = 37.0% n= 12 (5.3)

The fault is principally in the initial slopes of the isotherms, as is
shown by the high calculated value of the second virial coefficient
at this temperature (Figure 2).

Wackerle and Hughes {?24] have measured the pressure and density
of argon compressed by a strongshock-wave from an initial state of

' - k.d -
P, = 1 kb v, = 41.1 cm3 mole 1 To = 298°k Uo = =32.2 kb cm3 mole 1




The state of the gas after compression can be calculated by solving

simultaneously the equation of state and Hugonict's condition,
U-U +%@+p)(V-V) =0 (5.4)

For argon, and this equation of state

% 3
U-U = U -U +35N(T-T) ‘(5.5)
- 3. g .3
= pv.¢+NkT(2 b U - 5 NKT (5.6)

where ¢ is defined by (3.18). This equation is useful if the reduced
temperature of the shocked gas is above 12(€ /k) . It is not necessary
for the initial state to be at so high a temperature if experimental
values of P, and ﬁ: are used. This temperature is.achieved in
argon at pressures above about 40 kb with the initial state defined
above. Figure 9 shows two calculated curves. One is for the commonly
used (12,6) potential for argon [13, 2%]

o o
Argon R = 3.83 A €/k = 119K n=12 (5.7)
and the second for a potential with the same Rm and (€ /k) but with

n=29

Argon R = 3.83 2 €/x = 119% n=09 (5.8)
Equation (5.7) exceeds the true potential for argon by a factor of
between 4 and 10 for separations in the range 2.1 - 2.9 K , which

is the range of the mean separation of nearest neighbors in the shocked
gas. The true potential at these separations was measured by Amdur and
Mason [55] from the scattering of molecular beams, and is represented
by (5.8). Amdur and Mason recommend a purely repulsive potential with
an index of n = 8.3 for these separations but (5.8) appears to be

the best potential that passes through their points and yet has a

13
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realistic value of Rm and (&€ /k) . The two experimental points of
Wackerle and Hughes lie close to the Hugoniot curve calculated from

this potential.

6. Conclusions

The comparisons of theory and experiment described in the last
section were made without the introduction of any adjustable parameters.
Their success suggests that this equation of state is substantially
accurate at temperatures above 12(€ /k) and at all pressures less
than that of any transition to a solid phase., that is, below about
10 bar at these temperatures. It should therefore be reliable for
calculations of the pressures of strongly shocked fluids and of the
properties of the products of detonations. Its princip%‘ limitation

is its restriction to a Lennard-Jones potential.
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Appendix
- xt F(x) G(x) rexl F(x) G(x)
2 -3.570959 | +3.477052 50 +0.032279 | +0.296264
3 -2.452316 2.264765 60 0.083508 0.266375
4 -1.890323 1.730234 70 0.122792 0.243742
5 -1.543227 1.426019 80 0.154127 0.225868
6 -1.303763 1.227795 90 0.179861 0.211308
7 -1.126681 1.087347 100 0.201476 0.199161
8 -0.989338 0. 982009 150 0.273769 0.159081
9 -0.879049 0.899689 200 0.316118 0.135993
10 -0.788110 0.833330 250 0.344706 0.120570
12 -0. 645997 0.732371 300 0.365649 0.109356
14 -0.539117 0.658641 400 0.394818 0.093853
16 -0.455144 0. 602033 500 0.414574 0.083431
18 -0.387014 0.556957 600 0.429080 0.075818
20 -0.330360 0.520054 700 0.440308 0.069948
25 -0.222302 0.451126 800 0.449331 0.065246
30 -0.144601 0.402741 900 0.456785 0.061371
35 -0.085382 0.366527  |{1000 0.463078 0.058107
40 -0.038375 0.338186 00 0.577216 0.0
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Legends for Figuresg

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1

2

(no legend)

The calculated and exact second virial coefficient for

n=12 .

The calculated and exact third virial coefficient for

n=12 .

The fourth virial ccefficient calculated from (4.1) and
the values computed by Boys and Shavitt (circles) and by

Barker and Monaghan (arrows) for n = 12 .

The reduced pressure as a function of the density E? for
n =00 . The full curves are the machine calculations of

Alder and Wainwright. The dashed curves are discussed in
the text. The vertical line is at the density of closest

packing.

The calculated compression factors at T = 20 and T = 100

for n =12 . The points are the Monte Carlo calculations

of Wood and Parker.

The compression factor of helium. The full curves are

experimental and the dashed curves are calculated.

The compression factors of neon and hydrogen at 150°c.
The full curves are experimental and the dashed curves

are calculated.

The Hugoniot curves for argon for the potentials (5.7) and
(5.8). The experimental points of Wackerle and Hughes

are shown with their estimates of the experimental error.
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